EconPapers    
Economics at your fingertips  
 

Research on the output characteristics and SOC estimation method of lithium-ion batteries over a wide range of operating temperature conditions

Xiong Shu, Yongjing Li, Kexiang Wei, Wenxian Yang, Bowen Yang and Ming Zhang

Energy, 2025, vol. 317, issue C

Abstract: With the rapid growth of the EV market, the use of lithium-ion batteries (LIBs) has increased significantly. However, the safety of these battery systems remains a concern. Accurate estimation of the state of charge (SOC) is crucial to enhance battery safety and longevity. In this paper, the impact of temperature on LIB performance is investigated and it is found that temperature variations can lead to inaccurate SOC estimation. To address this issue, LIB performance and capacity degradation at different operating temperatures are experimentally studied, and Electrochemical impedance spectroscopy (EIS) characteristics are analyzed. Based on the analysis results, an SOC estimation method, combining recursive least squares with forgetting factor (FFRLS) and adaptive extended Kalman filtering (AEKF) with temperature compensation, is proposed in the study. This method is tested respectively at 0 °C, 25 °C and 45 °C, demonstrating the feasibility and higher prediction accuracy of the proposed method across a wide temperature range.

Keywords: Lithium-ion battery; Electric vehicle; SOC; FFRLS-AEKF (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225003688
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:317:y:2025:i:c:s0360544225003688

DOI: 10.1016/j.energy.2025.134726

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225003688