EconPapers    
Economics at your fingertips  
 

Retired battery capacity screening based on deep learning with embedded feature smoothing under massive imbalanced data

Ji Wu, Jieming Wang, Mingqiang Lin and Jinhao Meng

Energy, 2025, vol. 318, issue C

Abstract: Repurposing retired batteries is a pivotal solution to achieving carbon neutrality and optimizing resource allocation within the transportation and automotive industries. Accurate capacity estimation plays a definitive role in efficiently screening and reutilizing these retired batteries. However, the intricate and varied conditions of retired batteries in real-world applications can introduce challenges prominently characterized by the imbalanced properties of these massive and various batteries. Here, we present a capacity estimation method with adaptive feature engineering tailored to massive real-world battery data. First, a comprehensive feature base is established to identify optimal features for battery degradation level description. Then, an estimation model rooted in a modified ResNet-50 neural network is fortified by a unique feature distribution smooth technique to enhance learning efficacy within the challenging milieu of data imbalance. The proposed model can yield a test root-mean-square error of less than 0.2 Ah for a dataset encompassing over 30 million collected battery testing records. To the best of our knowledge, the developed model shows the first concerted effort to address the intricate task of capacity estimation with real-world massive imbalanced data for retired battery capacity screening applications.

Keywords: Retired battery; Capacity estimation; Imbalanced data; Deep learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225004037
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004037

DOI: 10.1016/j.energy.2025.134761

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004037