Security constrained unit commitment with multi-stage corrective control of hybrid AC/DC power systems with VSC-MTDC
Yinghao Ma,
Rishun Huang,
Hejun Yang,
Lei Sun,
Dabo Zhang,
Jizhe Dong,
Xiaodong Yang and
Yuming Shen
Energy, 2025, vol. 318, issue C
Abstract:
Security-constrained unit commitment (SCUC) is a practical approach for maintaining a satisfactory level of security while enhancing the cost-effectiveness of system operations. However, previous research has not sufficiently addressed the risks of N-1-1 cascade failures, making it challenging to interrupt cascading failures in the slow successive tripping stage. This paper proposes an SCUC approach, which introduces the voltage source converter based multi-terminal high-voltage direct current (VSC-MTDC) transmission system as a multi-stage corrective control measure to handle both emergency overloads and hidden failures of relay protection after the N-1 initial fault. First, an operation model of VSC-MTDC is proposed to fully exploit the VSC's flexible and fast adjustment capability. Then, a multi-stage SCUC model is formulated. The base state aims to schedule the power of generating units and VSC stations according to the load forecast. After N-1 contingency, the VSC-MTDC is used for fast short-term correction to mitigate network emergency overloads. Subsequently, coordinated with unit re-dispatch for long-term correction, the N-1-1 secure correction reacts to the hidden cascading failures by additional load shedding. Third, the proposed model is solved by an improved Benders decomposition-based three-level iterative algorithm. Finally, case studies are conducted to demonstrate the effectiveness of the proposed approach.
Keywords: N-1-1 cascading failures; VSC-MTDC; Multi-stage corrective control; Security-constrained unit commitment; Benders decomposition (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225005134
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:318:y:2025:i:c:s0360544225005134
DOI: 10.1016/j.energy.2025.134871
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().