Adaptive multi-domain capacity estimation for battery energy storage system based on multi-scale random sequence feature fusion
Zuolu Wang,
Xiaoyu Zhao,
Te Han,
Yanzheng Zhu,
Fengshou Gu and
Andrew Ball
Energy, 2025, vol. 319, issue C
Abstract:
Monitoring battery capacity degradation in lithium-ion battery energy storage systems (BESSs) is crucial for ensuring safe and reliable operations. However, conventional data-driven methods primarily focus on single-domain estimation and feature engineering from fixed charging/discharging stages, limiting their adaptability in real-world scenarios. Therefore, this paper proposes an adaptive multi-domain capacity estimation method for BESSs based on multi-scale random sequence feature fusion. Firstly, this paper proposes the adaptive multi-domain capacity estimation theory, which utilizes the Pearson correlation coefficient (PCC) for health feature screening and maximum mean discrepancy (MMD) for domain discrepancy identification and domain classification. Secondly, an optimal random sequence feature is proposed based on short-duration raw voltage and incremental capacity, considering the effects of both sampling interval and duration. Subsequently, a multi-scale convolutional neural network (MSCNN) is developed to fuse ageing information from the random sequence feature and enable accurate adaptive multi-domain capacity estimation. Finally, the validation is conducted using 130 batteries operating under various working conditions, and it shows the proposed method is more robust compared to the single-domain estimation. The overall RMSE and MAE are reduced to within 1.53 % and 1.18 %, with the overall R2 value up to 99 %. This demonstrates the superiority of the proposed method for real-world applications.
Keywords: Battery energy storage system; Multi-domain capacity estimation; Random sequence feature fusion; Multi-scale convolutional neural network (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225006395
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006395
DOI: 10.1016/j.energy.2025.134997
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().