Optimum size and structure for solar energy collection systems
Viorel Badescu
Energy, 2006, vol. 31, issue 12, 1819-1835
Abstract:
Procedures for sizing and optimizing the structure of solar collection systems are proposed. Four economical indices, including net present value and internal return rate, are given as examples of objective functions. Three solar energy applications were considered. A rather involved but still simple flat-plate solar collector model is used in calculations. The implementation was made for a specific geographical location with a detailed meteorological database available. In the case of solar collectors with uniformly distributed parameters, the procedure allows one to select the best devices from a given set of solar collectors. For every selected device the optimum range of the operation temperature is also determined. The best solution corresponds to systems with optimal non-uniformly distributed parameters. The general theorem proposed here shows how the modified optical efficiency and heat loss coefficient should be distributed for cost minimization. One finds that unglazed, single- and double-glazed collectors should be used on the same collection area in order to obtain the best performance. Also, the bottom insulation thickness should be changed accordingly.
Keywords: Solar collector; Sizing procedure; Structure optimization; Economical indices (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544205001829
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:31:y:2006:i:12:p:1819-1835
DOI: 10.1016/j.energy.2005.09.008
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().