EconPapers    
Economics at your fingertips  
 

Performance evaluation of district cooling plant with ice storage

Apple L.S. Chan, Tin-Tai Chow, Square K.F. Fong and John Z. Lin

Energy, 2006, vol. 31, issue 14, 2750-2762

Abstract: District cooling system (DCS) is a massive cooling energy production scheme that serves a group of buildings. The system performance can often be improved by the incorporation of a cool-storage system, in that part of the cooling demand is shifted from peak hours to non-peak hours. This brings mutual benefits to the power supplier and the consumers. In order to evaluate the energy performance and cost effectiveness of such an integrated technology, a feasible district cooling plus ice-storage system was developed for a hypothetical site in Hong Kong. A parametric study making use of the DOE-2 and TRNSYS simulation software was conducted to evaluate the system performance at different partial storage capacities, control strategies, and tariff structures. Other than the basic design factors, the results from 27 cases showed the importance of the tariff structure, the capital and electricity costs in this issue.

Keywords: District cooling system; Ice storage; Tariff structure (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544205002732
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:31:y:2006:i:14:p:2750-2762

DOI: 10.1016/j.energy.2005.11.022

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:31:y:2006:i:14:p:2750-2762