Analysis of a repowering proposal to the power generation system of a steel mill plant through the exergetic cost method
M. Modesto and
S.A. Nebra
Energy, 2006, vol. 31, issue 15, 3261-3277
Abstract:
The rational use of energy became a priority for all industries in Brazil after the energetic rationing in 2001. The aim of this work is to assess a proposal of a power generation system for Companhia Siderúrgica Tubarão, a steel mill plant. The current system is based on a regenerative Rankine cycle using two gases from steel production—blast furnace gas (BFG) and coke oven gas (COG)—to generate electric power and occasionally steam for the process. The proposed system is a combined cycle comprising two gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine. The fuel for the gas turbines is BFG, and the supplementary firing of HRSG uses COG. The proposed HRSGs work at three pressure levels. The system was assessed by means of two thermoeconomic methodologies, Theory of Exergetic Cost and Thermoeconomic Functional Analysis; exergetic and monetary costs of power production were calculated and compared to the respective values of the current system.
Keywords: Repowering; Thermoeconomic analysis; Steel mills (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544206000995
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:31:y:2006:i:15:p:3261-3277
DOI: 10.1016/j.energy.2006.03.032
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().