Exergy analysis of an integrated fuel processor and fuel cell (FP–FC) system
E.R. Delsman,
C.U. Uju,
M.H.J.M. de Croon,
J.C. Schouten and
K.J. Ptasinski
Energy, 2006, vol. 31, issue 15, 3300-3309
Abstract:
Fuel cells have great application potential as stationary power plants, as power sources in transportation, and as portable power generators for electronic devices. Most fuel cells currently being developed for use in vehicles and as portable power generators require hydrogen as a fuel. Chemical storage of hydrogen in liquid fuels is considered to be one of the most advantageous options for supplying hydrogen to the cell. In this case a fuel processor is needed to convert the liquid fuel into a hydrogen-rich stream. This paper presents a second-law analysis of an integrated fuel processor and fuel cell system. The following primary fuels are considered: methanol, ethanol, octane, ammonia, and methane. The maximum amount of electrical work and corresponding heat effects produced from these fuels are evaluated. An exergy analysis is performed for a methanol processor integrated with a proton exchange membrane fuel cell, for use as a portable power generator. The integrated FP–FC system, which can produce 100W of electricity, is simulated with a computer model using the flow-sheeting program Aspen Plus. The influence of various operating conditions on the system efficiency is investigated, such as the methanol concentration in the feed, the temperature in the reformer and in the fuel cell, as well as the fuel cell efficiency. Finally, it is shown that the calculated overall exergetic efficiency of the FP–FC system is higher than that of typical combustion engines and rechargeable batteries.
Keywords: Exergy analysis; Hydrogen production; Chemical reactors; Fuel cells; Fuel processing (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544206000697
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:31:y:2006:i:15:p:3300-3309
DOI: 10.1016/j.energy.2006.03.011
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().