Analysis of the overall energy intensity of alumina refinery process using unit process energy intensity and product ratio method
Liru Liu,
Lu Aye,
Zhongwu Lu and
Peihong Zhang
Energy, 2006, vol. 31, issue 8, 1167-1176
Abstract:
Alumina refinery is an energy intensive industry. Traditional energy saving methods employed have been single-equipment-orientated. Based on two concepts of ‘energy carrier’ and ‘system’, this paper presents a method that analyzes the effects of unit process energy intensity (e) and product ratio (p) on overall energy intensity of alumina. The important conclusion drawn from this method is that it is necessary to decrease both the unit process energy intensity and the product ratios in order to decrease the overall energy intensity of alumina, which may be taken as a future policy for energy saving. As a case study, the overall energy intensity of the Chinese Zhenzhou alumina refinery plant with Bayer–sinter combined method between 1995 and 2000 was analyzed. The result shows that the overall energy intensity of alumina in this plant decreased by 7.36 GJ/t-Al2O3 over this period, 49% of total energy saving is due to direct energy saving, and 51% is due to indirect energy saving. The emphasis in this paper is on decreasing product ratios of high-energy consumption unit processes, such as evaporation, slurry sintering, aluminium trihydrate calcining and desilication. Energy savings can be made (1) by increasing the proportion of Bayer and indirect digestion, (2) by increasing the grade of ore by ore dressing or importing some rich gibbsite and (3) by promoting the advancement in technology.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544205001155
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:31:y:2006:i:8:p:1167-1176
DOI: 10.1016/j.energy.2005.04.013
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().