EconPapers    
Economics at your fingertips  
 

Study of energy dissipation mechanisms and pressure pulsation spectrums in a vertical axial flow pumping station on the ultra-low head condition based on multiple analysis methods

Shuaihao Lei, Li Cheng and Weigao Sheng

Energy, 2025, vol. 320, issue C

Abstract: In the context of global energy shortages, the efficient and safe operation of pumping stations is essential for improving energy utilization and achieving energy conservation and emission reduction goals. Vertical axial flow pumping stations, especially those operating under ultra-low head conditions, face specific challenges related to energy dissipation and pressure pulsations — both critical to enhancing overall efficiency. This study employed an entropy production head loss model and pressure pulsation test to assess the energy dissipation and pressure pulsation characteristics of the pump system. Results showed that the total head loss under ultra-low head condition (0.18 Hd) is 1.26 times higher than under design condition (Hd). The misalignment between the outlet velocity angle of impeller and the inlet vane angle of guide-vane was identified as the primary factor contributing to energy loss and hydraulic instability. Additionally, wall effects caused significant head loss near the blade and shroud regions. Under non-design conditions, pressure pulsations in the impeller and guide-vane regions fluctuated significantly. To analyze these fluctuations, feature mode decomposition (FMD) and energy flow density (EFD) methods were applied, demonstrating a strong correlation between EFD and peak-to-peak value (PPV). These findings offer important insights for optimizing pump station design and improving operational efficiency.

Keywords: Axial flow pumping station; Ultra-low head; Entropy production theory; Pressure pulsation; Feature mode decomposition; Energy flow density (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225008692
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008692

DOI: 10.1016/j.energy.2025.135227

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-25
Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008692