Low carbon consumption and cleaner aromatics production integrated coke oven gas: Process design and benefit analysis
Junqiang Zhang,
Haifeng Lei,
Guizhu Zhang,
Junwen Wang,
Yunfei Gao,
Wei Zhang and
Zhitong Zhao
Energy, 2025, vol. 321, issue C
Abstract:
The coal-to-aromatics(CTA) process has a significant negative environmental impact due to the problem of high carbon emissions caused by the low hydrogen to carbon ratio. The introduction of coke oven gas to partially replace coal is a highly feasible approach to improving the process. In this study, a coke oven gas integrated coal-to-aromatics process using methane dry\steam reforming technology was proposed and simulated. A comprehensive techno-economic analysis and life cycle assessment (LCA) were also carried out to highlight the advantages of the proposed process. Findings reveal that the techno-economic performance of the COG-CTA process demonstrated significant advantages over the traditional CTA process. The results showed that the energy efficiency, hydrogen utilization, carbon utilization, and production cost of the COG-CTA process were 74.81 %, 53.27 %, 84.70 %, and 1289.19 M$, respectively. Compared with the conventional CTA process, the energy efficiency increased by 18.66 %, hydrogen utilization increased by 32.08 %, carbon utilization increased by 26.49 %, and production cost decreased by 39.39 %. The LCA results showed a decrease in greenhouse gas (GHG) emissions from 9.29 to 4.09 kgCO2·kg−1, as well as a 82.48 % reduction in life cycle water consumption.
Keywords: Coke oven gas; Coal to aromatic; Process optimization; Techno-economic; Life cycle assessment (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225011582
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:321:y:2025:i:c:s0360544225011582
DOI: 10.1016/j.energy.2025.135516
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().