EconPapers    
Economics at your fingertips  
 

Reinforcement learning-based multi-objective smart energy management for electric vehicle charging stations with priority scheduling

Fatih Çakıl and Necati Aksoy

Energy, 2025, vol. 322, issue C

Abstract: Reinforcement learning (RL)-based control structures represent a transformative approach to optimizing energy management in electric vehicle (EV) charging stations, offering unparalleled adaptability and efficiency. This paper introduces a novel RL-based intelligent control strategy, designed to address multi-objective challenges in EV charging, such as energy efficiency, cost-effectiveness, and user prioritization. Central to this study is the development of a unique environment model, which incorporates dynamic variables including vehicle priority, arrival times, and real-time pricing data, ensuring realistic and practical applications. Additionally, a custom reward strategy is proposed, enabling the RL agents to effectively learn and adapt to complex operational demands. The study evaluates the performance of three RL algorithms—Q-Learning, SARSA, and Expected SARSA—within the proposed environment model, demonstrating their capabilities in reducing charging costs and improving profitability. Experimental results indicate that the Q-Learning agent achieved an average cost reduction of up to 66.4% compared to conventional charging strategies, with energy costs dropping from 11.78€ to 3.96€ per unit in high-priority cases. Expected SARSA exhibited a competitive performance, yielding up to 44.3% cost savings, whereas SARSA consistently resulted in the lowest cost efficiency, with reductions of only 46.6% in comparable scenarios. Furthermore, the RL-based scheduling framework successfully shortened peak-hour waiting times by 40%, while ensuring equitable prioritization of charging requests. Through a comprehensive set of realistic case studies and scenarios, the effectiveness of these algorithms is analyzed, focusing on their capacity to manage energy costs, enhance profitability, and adapt to fluctuating pricing conditions.

Keywords: Reinforcement learning; Energy management; Electric vehicle; Charging control; Machine learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422501117X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:322:y:2025:i:c:s036054422501117x

DOI: 10.1016/j.energy.2025.135475

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-08
Handle: RePEc:eee:energy:v:322:y:2025:i:c:s036054422501117x