EconPapers    
Economics at your fingertips  
 

Experimental study on the effects of equivalence ratio on vented methane-hydrogen mixture explosion in confined area

Shuhong Li, Jianbo Ma, Kaiyuan Zhao, Zihao Xiu, Ranran Li, Zhenyi Liu, Yao Zhao, Mingzhi Li and Qiqi Liu

Energy, 2025, vol. 322, issue C

Abstract: The combustion and explosive characteristics of a methane-hydrogen mixture (with 15 % hydrogen mixing volume ratio) were studied in a 55 m3 confined space at various equivalence ratios (Φ = 0.9/1.0/1.1/1.2/1.3). Internal and external pressures, along with flame shape, were analyzed. The results suggest that the outside flame propagation rate initially increases and then decreases as the equivalency ratio increases. The fastest flame propagation speed (62.751 m/s) and the greatest outer flame length (11.045 m) occur at an equivalency ratio of 1.1. At the summit of the four phases that typically constitute the development of internal overpressure, the Helmholtz oscillation-generated peak is predominant. For equivalency ratios of 0.9/1.0/1.1/1.2/1.3, Phel has values of 2.705/6.815/12.210/12.339/4.098 kPa. The hazard of the confined space is assessed using the deflagration index (KG), closely associated with Phel. The maximal value of KG, which is 8693.5493 kPa m/s, is achieved at an equivalency ratio of 1.1. The outdoor overpressure is influenced by the pressure generated by the venting structure's aperture and external explosion. The link between the flame propagation speed and the outdoor overpressure apex can be approximated using an exponential function. Findings support designing explosion prevention, investigating accidents, and assessing risks in methane-hydrogen energy industry.

Keywords: Vented explosion; Methane-hydrogen; Outdoor flame; Internal overpressure; External overpressure (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225012885
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012885

DOI: 10.1016/j.energy.2025.135646

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-08
Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012885