Evaluation of multi-mode shared combustor with different flame holder designs for an innovative turbo-ramjet combined cycle engine
Kai Zhang,
Xuanfei Yu,
Duo Zhang,
Jian Guo and
Fei Qin
Energy, 2025, vol. 323, issue C
Abstract:
Air-breathing combined cycle propulsion is critical for realizing sustained long range hypersonic flying. Indexes like combustion efficiency and total pressure recovery are commonly employed in combustor design evaluations. However, the opposite trends encountered making these indexes occasionally falls short to effectively guide the design trade-offs of combustor concerning the complicated full-envelope combustion organization requirements of combined-cycle engine like FABRE. On account of this, in current study a system-level design evaluation method for FABRE multi-modal combustor is developed through integrating of combustor numerical simulations with engine performance assessment model. The method is then applied to evaluate a combustor designed with three representative flame holder schemes. Results show that the scheme without intermediate strut assembly and with half invasion depth strut assembly delivers superior performance in ramjet mode at Mach 3–4 and 5–6 respectively. The scheme with full length intermediate strut assembly nevertheless shows significant performance advantage in turbocharged mode. Considering each of the scheme evaluated possesses distinct advantage over some specified operation range, an adaptable scheme with a retractable intermediate strut assembly is identified as the optimal solution for FABRE wide-operating-range multi-modal shared combustor. This study may be helpful to provide some crucial guidance for the design of complex combustion systems.
Keywords: Thermodynamic model; Ramjet combined engine; Performance evaluation; Numerical simulation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225015178
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:323:y:2025:i:c:s0360544225015178
DOI: 10.1016/j.energy.2025.135875
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().