Effect of gradient metal foam on phase change heat storage process under constant rotation condition: A numerical study
Xinyu Huang,
Zemin Liu,
Liu Lu,
Qihui Wang,
Bo Li,
Xiaohu Yang and
Hailong Li
Energy, 2025, vol. 324, issue C
Abstract:
To address the issue of uneven phase transition and slow melting rates of phase change materials during heat storage, a combination of active rotation and gradient metal foam is proposed for enhanced heat transfer in active and passive composites. The phase change energy storage unit is divided into three different regions, which are modeled numerically based on the enthalpy hole method, and implemented in the commercial software Fluent 2023. A numerical model of the melting process of a horizontal energy storage unit with metal foam under constant rotation is established. The impact of positive, non-gradient, and negative gradient pore combinations on the unit's average temperature, liquid phase rate, thermal capacity, and rate of heat storage is analyzed. The response and interaction between gradient pore combinations and pore density on melting time and average heat storage rate are further investigated using the Taguchi design method. The findings reveal that, with constant pore density, the positive gradient porosity combination has a more significant influence on melting time compared to non-gradient and negative gradient pore structures. Specifically, the optimal melting time for Case 12 (porosity combination 0.97-0.98-0.99, 30 PPI) is 13.17 % and 45.95 % lower than that of non-gradient structure Case 13 and negative gradient structure Case 14, respectively. Furthermore, Case 12 exhibits an average heat storage rate increase of 15.72 % and 86.06 % compared to Case 13 and Case 14, respectively.
Keywords: Phase change heat storage; Metal foam; Porosity gradients; Taguchi method; Active rotation; Heat storage rate (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225014811
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:324:y:2025:i:c:s0360544225014811
DOI: 10.1016/j.energy.2025.135839
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().