Ignition dynamics in glycolaldehyde flame catalyzed by Na and Mg ions: a theoretical multiscale approach
Youngoh Kim and
Joonmyung Choi
Energy, 2025, vol. 324, issue C
Abstract:
The effects of inorganic components on biofuel combustion characteristics are crucial for the design of green energy sources but are not fully understood. To address this knowledge gap, we herein investigate the catalytic effects of Na+ and Mg2+ on glycolaldehyde combustion and quantitatively predicts energy transfer within the molecular chain during fuel cracking and ionic bonding–derived catalytic behavior. From a molecular level thermodynamics, Na+ and Mg2+ reduce the activation energy of GA combustion by 5.3 and 22.8 kJ mol−1, respectively. Moreover, Na+ is shown to enhance flame–vortex interactions at the flame front and thus reduce the spatial scale of the vortex from 532 to 286 m−1, with the electromechanical perturbations induced by this ion lowering the activation energies of radical-producing vibrational fuel-cracking reactions. Radical fragments increase proton emission by 1.4 times, facilitating the release of turbulent kinetic energy within the flame, i.e., Na+ reduces the flame temperature by 68 K. The energy released at the flame front promotes the hydrodynamic mixing of the oxidant and fuel and thus facilitates complete combustion. By contrast, Mg2+ promotes not only fuel cracking but also extinguishant production, thus counteracting flame initiation.
Keywords: Sodium ion; Magnesium ion; Biofuel combustion; Glycolaldehyde; Catalytic combustion behavior (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225017542
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:324:y:2025:i:c:s0360544225017542
DOI: 10.1016/j.energy.2025.136112
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().