EconPapers    
Economics at your fingertips  
 

Genetic algorithm-assisted multi-objective optimization for developing a Multi-Wiebe Combustion model in ammonia-diesel dual fuel engines

Yan Zhang, Dawei Wu, Ebrahim Nadimi, Athanasios Tsolakis, Grzegorz Przybyla and Wojciech Adamczyk

Energy, 2025, vol. 325, issue C

Abstract: Direction Injection Dual-Fuel (DIDF) engines fueled with ammonia and diesel are identified as a promising solution for decarbonizing large-scale Compression Ignition (CI) engines. This study addresses the research gap of missing a parametric model for simulating the combustion process in DIDF CI engines using ammonia and diesel. Multi-objective optimization and genetic algorithms are applied to generate a parametric Multi-Wiebe Combustion (MWC) model based on experimental results from a NH3-diesel DIDF CI engine. The innovative approach supports one-dimensional engine modeling with NH3-diesel combustion in GT-Power, enhancing the understanding of direct injection timings, fuel interactions, and combustion dynamics. Key findings include the impact of dual-fuel injection timings and fuel ratios on ignition delay, individual combustion phase durations, and heat release rate, providing a quantitative description of combustion behavior under varying conditions. The validation results show that with injection timing variations from −17.5 to −10 CAD aTDC and NH3 energy ratios ranging from 40 % to 60 %, relative errors remain below 5 % for key performance indicators such as pressure and efficiency. This study proposes a methodology to generate an accurate combustion model – the MWC model - for one-dimensional dual-fuel engine simulation, aiding in calibrating scaled-up DIDF CI engines and guiding further engine designs.

Keywords: Multi-Wiebe Combustion model; Direct injection; Ammonia; Genetic algorithm; Multi-objective optimization (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225018237
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:325:y:2025:i:c:s0360544225018237

DOI: 10.1016/j.energy.2025.136181

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-06
Handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225018237