A comprehensive life cycle impact evaluation of hydrogen production processes for cleaner applications
A. Yagmur Goren,
Ibrahim Dincer and
Ali Khalvati
Energy, 2025, vol. 326, issue C
Abstract:
The worldwide energy demands have greatly increased with urbanization and population growth. Air pollution, acid rain, greenhouse gas emissions, global warming originating from CO2 emissions, depletion of energy supplies, and environmental degradation resulting from climate change are all consequences of using non-renewable fossil fuel-based energy infrastructure. To minimize emissions, renewable energy-based alternative energy sources must be investigated. In this regard, hydrogen (H2) has emerged as a promising fuel to meet energy requirements, and green H2 production with net-zero emissions has gained significant interest in recent years. Therefore, this study uses the life cycle assessment approach to evaluate the atmospheric emissions and environmental impact parameters of the gasification, electrolysis, and dark fermentation-microbial electrolysis hybrid process and assess their sustainability levels, considering the sustainable development goals. Among the studied H2 production processes, the maximum CO2 emission originates from the coal gasification process, accounting for 18.6 kg-CO2/kg-H2, while the alkaline electrolysis process provides the lowest total CO2 emission of 6.39 kg-CO2/kg-H2. Furthermore, the biological-based dark fermentation-microbial electrolysis cell process is a promising option owing to its highest negative biogenic CO2 emission of −68.69 kg-CO2/kg-H2. The environmental impact parameters of the studied processes are calculated considering the emissions, and the highest global warming potential of 21.75 kgCO2-eq./kg-H2 is obtained for the coal gasification process, considering the life cycle assessment coefficients. Overall, the lowest atmospheric emissions and environmental impacts are obtained for the electrolysis process. Consequently, these results revealed that switching from the fossil fuel resources used in the conventional H2 production methods to fully sustainable sources, such as renewables, can make energy production methods entirely sustainable from an environmental point of view.
Keywords: Hydrogen production; Sustainability; Sustainable development goals; Life cycle assessment; Environmental impact; Cleaner applications (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225018249
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:326:y:2025:i:c:s0360544225018249
DOI: 10.1016/j.energy.2025.136182
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().