Dynamic economic dispatch of multi-area wind-solar-thermal power systems with fractional order comprehensive learning differential evolution
Yang Wang,
Guojiang Xiong,
Shengping Xu and
Ponnuthurai Nagaratnam Suganthan
Energy, 2025, vol. 326, issue C
Abstract:
The significance of multi-area dynamic economic dispatch (MADED) is amplified by the integration of wind and solar energy sources which introduces considerable fluctuations. In this work, a MADED model incorporating wind and solar energy is developed. Weibull and lognormal distributions are employed to characterize their uncertainty, respectively. The over/underestimation technique is then employed to model the uncertainty. To resolve the model, an enhanced variant named FORCL-LSHADE by incorporating refined comprehensive learning (RCL) strategy, fractional order mutation, RCL-based crossover, and RCL-based parameter tuning is presented. FORCL-LSHADE overcomes the premature convergence issues of LSHADE while preserving robust convergence and maintaining population diversity. Comparative results across two MADED systems and a practical system in China, considering scenarios with and without wind and solar, demonstrate that FORCL-LSHADE offers a significant competitive advantage over other algorithms. It achieves cost reductions of 214.64$, 59394.55$, and 2657.10$ in Case (i), and 228.38$, 57045.64$, and 2993.28$ in Case (ii). It also exhibits faster convergence, reaching final solutions at 10 %, 22.5 %, and 70 % of function evaluations in Case (i), and 10 %, 20 %, and 70 % in Case (ii). Its standard deviation is only 4.25 %, 36.87 %, and 44.99 % of LSHADE's in Case (i), and 3.91 %, 34.43 %, and 36.81 % in Case (ii).
Keywords: Comprehensive learning; Fractional order; LSHADE; Dynamic economic dispatch; Renewable energy; Uncertainty (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225018754
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:326:y:2025:i:c:s0360544225018754
DOI: 10.1016/j.energy.2025.136233
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().