EconPapers    
Economics at your fingertips  
 

An efficient method for energy harvesting from overhead insulated shield wires based on a magnetically controlled reactor with active tuning

Xiaofeng Chen, Shengwen Shu, Shiyun Cao, Han Qiu, Jun Xu and Chaoying Fang

Energy, 2025, vol. 326, issue C

Abstract: Harvesting energy from insulated shield wires using a tuning reactor is an effective way to supply power to large-scale online monitoring devices installed on high-voltage overhead transmission lines. However, significant fluctuations in equivalent parameters induced by adverse meteorological conditions cause overvoltage, posing challenges to conventional tuning reactors that rely only on inherent material characteristics for self-regulation. To address this problem, this study presents a magnetically-controlled energy harvesting reactor with active tuning for overhead insulated shield wires. In addition to the high- and low-voltage windings, a control winding is added to the low-voltage core side to adjust saturation by injecting an external DC component, allowing active inductance adjustment and limiting overvoltage caused by large fluctuations in equivalent parameters. Field-circuit coupling simulations show that the maximum power under a rated insulation level of 28.5 kV is 985.8 W. Under extreme ice conditions, the maximum power increases to 1281.42 W. However, the voltage across the high-voltage side of the energy harvesting reactor rises to 33.43 kV, exceeding the rated insulation level. After applying the control winding, the voltage on the high-voltage side decreases to 28.42 kV, the maximum power reduces to 929.30 W, and the maximum magnetic flux intensity increases from 1.04 T to 1.44 T. Experimental results from a reduced-scale model verify the effectiveness of the proposed reactor in handling adverse meteorological conditions. The proposed method enhances the robustness and engineering applicability of energy harvesting from overhead insulated shield wires.

Keywords: Energy harvesting; Overhead insulated shield wire; Magnetically controlled energy; Active tuning; Adverse meteorological conditions (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225019747
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:326:y:2025:i:c:s0360544225019747

DOI: 10.1016/j.energy.2025.136332

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-20
Handle: RePEc:eee:energy:v:326:y:2025:i:c:s0360544225019747