EconPapers    
Economics at your fingertips  
 

Thermal resilience to climate change of energy retrofit technologies for building envelope

Giuseppe Aruta, Fabrizio Ascione, Teresa Iovane and Margherita Mastellone

Energy, 2025, vol. 327, issue C

Abstract: Over the past 20 years, energy retrofit measures for buildings, such as thermal insulation and window replacement, were standard practices. To further enhance the energy performance of building envelopes, innovative technologies like double-skin façades, opaque ventilated façades, and green roofs are also available, fostering a positive interaction between buildings and the environment. The paper evaluates the resilience of building technologies in relation to climate evolution and warming, considering both general (chronic) overheating and (spot) extreme events. Energy performances of a reference office, applying traditional and innovative energy retrofit packages, are analyzed under historical, current, and future weather conditions across three locations. The research questions and novelty are whether both traditional and innovative energy retrofits remain effective under climatic evolution and how the effectiveness of traditional versus innovative building technologies changes. Regarding space-heating energy demand, both retrofits are equally effective and resilient. For space cooling, the innovative package proves more effective under moderate conditions. However, under extreme outdoor conditions, traditional thermal insulation technologies may be more effective than innovative technologies. Attention is required when indoor temperatures are free-floating, as excessive thermal protection can imply indoor overheating. Ultimately, the thinking approach for energy retrofit measures should focus on long-term effectiveness and resilience.

Keywords: Energy retrofit; Climate change; Building resilience; Heat wave; Building envelope efficiency (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225021310
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:327:y:2025:i:c:s0360544225021310

DOI: 10.1016/j.energy.2025.136489

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-20
Handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225021310