EconPapers    
Economics at your fingertips  
 

A machine learning method to evaluate head sea induced weather impact on ship fuel consumption

Chi Zhang, Daniel Vergara, Mingyang Zhang, Tsoulakos Nikolaos and Wengang Mao

Energy, 2025, vol. 328, issue C

Abstract: A ship's fuel consumption is significantly affected due to ship motions caused by waves and wind when sailing under ocean weather conditions. An essential step to develop certain energy efficiency measures is to understand, model and estimate how much extra fuel consumption is caused by encountering weather conditions, and from which components of a ship's energy system that extra consumption is attributed to. In this study, experimental tests of added resistance in waves during the past decades in open literature are collected and a Gaussian process regression (GPR) model is developed to describe a generic ship's added resistance in head waves. The proposed GPR model achieves better prediction accuracy than semi-empirical formulas (white box) and gives more rational transfer function of added wave resistance coefficient than those produced by the artificial neural networks (ANN), especially in the short-wave regime. The proposed GPR model is integrated into a grey box prediction framework for ship fuel consumption using several years of performance monitoring data collected onboard a chemical tanker. The prediction results indicate an improvement in model performance when moving from the white box to the grey box model, with R2 increasing by 38 % and Root Mean Square Error (RMSE) decreasing by 65 %. Finally, the investigation of weather impact on the ship's extra fuel cost is demonstrated by the proposed model.

Keywords: Added wave resistance; Head wave; Gaussian process regression; Machine learning; Ship fuel consumption; Weather impact (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225021759
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021759

DOI: 10.1016/j.energy.2025.136533

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-17
Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021759