EconPapers    
Economics at your fingertips  
 

Numerical investigation of coupling approaches and dimpled structure on melting characteristics in PCM capsule packed-bed

Haonan Jia, Jian Yang, Yuhang Tian, Jie Chen and Qiuwang Wang

Energy, 2025, vol. 329, issue C

Abstract: In solar energy utilization, phase change material (PCM) spherical capsule packed-bed systems can effectively mitigate intermittency and fluctuation issues. However, convective heat transfer between the fluid and capsules significantly influences thermal storage, and the impact of different treatment methods on the phase-change process still requires in-depth investigation. This study employs numerical methods to analyze the effects of constant temperature, sequential coupling and bidirectional coupling approaches on the melting process. Results show that different treatment methods have a significant impact on the melting rate. The constant temperature method exhibits the fastest melting rate, while in sequential and bidirectional coupling methods, the melting rate accelerates with increasing inlet velocity due to enhanced convective heat transfer. The liquid fraction and flow pattern distribution vary depending on the method, with the bidirectional coupling method showing more uniform distribution of liquid PCM on the windward side compared to sequential coupling. Additionally, the dimpled structure accelerates the melting rate under all treatment methods, but the extent of enhancement differs: sequential coupling amplifies the enhancement effect compared to bidirectional coupling, while the constant temperature method weakens it. Finally, a correlation formula for the complete melting time is established, with an average error of 2.4 %.

Keywords: PCM capsule; Sequential coupling; Bidirectional coupling; Melting process; Numerical simulation; Correlation formula (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225024387
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:329:y:2025:i:c:s0360544225024387

DOI: 10.1016/j.energy.2025.136796

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-18
Handle: RePEc:eee:energy:v:329:y:2025:i:c:s0360544225024387