EconPapers    
Economics at your fingertips  
 

Exergetic comparison of efficiency indicators for combined heat and power (CHP)

Ivar S. Ertesvåg

Energy, 2007, vol. 32, issue 11, 2038-2050

Abstract: Legislative regulations in favor of combined heat and power (CHP) production have been implemented in many countries. Although these regulations put different emphasis on power production vs. process heat production, they are based on energy quantities and not on exergy. In order to analyze and compare the exergetic consequences of the various legislations, a relative avoided irreversibility (RAI) is defined. This can be regarded as the exergy loss that is avoided when reference plants with separate production are replaced by an actual CHP plant. Some series of industrial and district heating CHP plants, under varying operational conditions, are used as test cases. It is seen that some, but not all, CHP cases are exergetically beneficial to separate generation. Comparison with the RAI allows a quantitative assessment of the various performance indicators. It is seen that exergetic improvements were only captured to a limited degree by the various energy-based efficiency indicators. Some legislatively defined indicators even appear to discourage thermodynamic improvements.

Keywords: Exergy; Cogeneration; CHP; Legislation; Efficiency (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544207000916
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:32:y:2007:i:11:p:2038-2050

DOI: 10.1016/j.energy.2007.05.005

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:32:y:2007:i:11:p:2038-2050