Design and control of an ideal heat-integrated distillation column (ideal HIDiC) system separating a close-boiling ternary mixture
Kejin Huang,
Lan Shan,
Qunxiong Zhu and
Jixin Qian
Energy, 2007, vol. 32, issue 11, 2148-2156
Abstract:
Despite the fact that a stand-alone ideal heat-integrated distillation column (ideal HIDiC) can be thermodynamically efficient and operationally stable, the application of an ideal HIDiC system to separate a close-boiling multi-component mixture is still a challenging problem because of the possibility of strong interactions within/between the ideal HIDiCs involved. In this work, employment of two ideal HIDiCs to separate a close-boiling ternary mixture is studied in terms of static and dynamic performance. It is found that the ideal HIDiC system can be a competitive alternative with a substantial energy saving and comparable dynamic performance in comparison with its conventional counterpart. The direct sequence appears to be superior to the indirect sequence due to the relatively small vapor flow rates to the compressors. Controlling the bottom composition of the first ideal HIDiC with the pressure elevation from the stripping section to the rectifying section helps to suppress the disturbances from the feed to the second ideal HIDiC. Special caution should, however, be taken when the latent heat of the distillates is to be recovered within/between the ideal HIDiCs involved, because a positive feedback mechanism may be formed and give rise to additional difficulties in process operation.
Keywords: Distillation; Ideal HIDiC system; Heat integration; Process design; Process operation (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544207000746
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:32:y:2007:i:11:p:2148-2156
DOI: 10.1016/j.energy.2007.04.007
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().