Exergy transfer characteristics of forced convective heat transfer through a duct with constant wall temperature
Shuang-Ying Wu,
You-Rong Li,
Yan Chen and
Lan Xiao
Energy, 2007, vol. 32, issue 12, 2385-2395
Abstract:
The exergy transfer characteristics of fluid flow and heat transfer inside a circular duct under fully developed laminar and turbulent forced convection are presented. Temperature is kept constant at the duct wall. The exergy transfer Nusselt number is put forward and the analytical expressions for exergy transfer Nusselt number are obtained as functions of heat transfer Nusselt number, Reynolds number, Prandtl number, etc. The variations of the local and mean convective exergy transfer coefficient, non-dimensional exergy flux, exergy transfer rate, etc. with operating parameters are presented graphically. By reference to a smooth duct and taking air as working fluid, a numerical analysis of the influence of the Reynolds number and non-dimensional cross-sectional position on exergy transfer characteristics has been conducted. The results show that the process parameters and configuration in the fluid flow and heat transfer inside a duct should be properly selected so that the forced convection process could have the best exergy utilization. In addition, the results corresponding to the exergy transfer and energy transfer are compared.
Keywords: Convective heat transfer; Exergy transfer; Energy transfer; Constant wall temperature (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054420700103X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:32:y:2007:i:12:p:2385-2395
DOI: 10.1016/j.energy.2007.05.014
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().