Analysis of potential fuel consumption and emissions reductions from fuel cell auxiliary power units (APUs) in long-haul trucks
Nicholas Lutsey,
Christie-Joy Brodrick and
Timothy Lipman
Energy, 2007, vol. 32, issue 12, 2428-2438
Abstract:
The idling of heavy-duty trucks results in additional emissions, fuel consumption, and cost. Small fuel cell auxiliary power units (APUs) (now in development) are promising alternatives to idling the main engine. A solid oxide fuel cell (SOFC) APU is particularly attractive, because in conjunction with a reformer, it could operate on widely available diesel fuel. Because fuel cell APUs may not only reduce environmental impacts, but also reduce operating costs, this application has been cited as an attractive early market niche for fuel cells. Our objective is to determine whether SOFC APUs are likely to soon be economically feasible for those trucks that idle most and what energy and environmental benefits are probable. We estimate the APU market size as a function of APU costs by applying Monte Carlo sampling and net present value (NPV) economic analysis to our ADVISOR-based vehicle fuel consumption model. Emissions and fuel economy benefits estimates are then presented as a function of varying market penetration levels, assuming installation on only new vehicles and removal at the end of the 4-year SOFC lifecycle. With modest economic incentives from government and continuing fuel cell technology improvements, we find that SOFC APUs might be economically feasible for up to 15% of the long-haul truck population (60,000 trucks) in the United States in the 2015 time frame, resulting in a 30% reduction of heavy-duty truck fuel use during overnight idling and a 40% reduction in oxides of nitrogen (NOx) produced during idling.
Keywords: Heavy-duty trucks; Fuel cell; Auxiliary power unit (APU) (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544207001016
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:32:y:2007:i:12:p:2428-2438
DOI: 10.1016/j.energy.2007.05.017
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().