EconPapers    
Economics at your fingertips  
 

Autothermal two-stage gasification of low-density waste-derived fuels

Stefan Hamel, Holger Hasselbach, Steffen Weil and Wolfgang Krumm

Energy, 2007, vol. 32, issue 2, 95-107

Abstract: In order to increase the efficiency of waste utilization in thermal conversion processes, pre-treatment is advantageous. With the Herhof Stabilat® process, residual domestic waste is upgraded to waste-derived fuel by means of biological drying and mechanical separation of inerts and metals. The dried and homogenized waste-derived Stabilat® fuel has a relatively high calorific value and contains high volatile matter which makes it suitable for gasification. As a result of extensive mechanical treatment, the Stabilat® produced is of a fluffy appearance with a low density. A two-stage gasifier, based on a parallel-arranged bubbling fluidized bed and a fixed bed reactor, has been developed to convert Stabilat® into hydrogen-rich product gas. This paper focuses on the design and construction of the configured laboratory-scale gasifier and experience with its operation. The processing of low-density fluffy waste-derived fuel using small-scale equipment demands special technical solutions for the core components as well as for the peripheral equipment. These are discussed here. The operating results of Stabilat® gasification are also presented.

Keywords: Pyrolysis; Combustion; Fixed bed; Fluidized bed; Hydrogen; Synthesis gas; Fuel feeding (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544206000764
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:32:y:2007:i:2:p:95-107

DOI: 10.1016/j.energy.2006.03.017

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:32:y:2007:i:2:p:95-107