EconPapers    
Economics at your fingertips  
 

Reducing energy-related CO2 emissions using accelerated weathering of limestone

Greg H. Rau, Kevin G. Knauss, William H. Langer and Ken Caldeira

Energy, 2007, vol. 32, issue 8, 1471-1477

Abstract: The use and impacts of accelerated weathering of limestone (AWL; reaction: CO2+H2O+CaCO3→Ca2++2(HCO3−) is explored as a CO2 capture and sequestration method. It is shown that significant limestone resources are relatively close to a majority of CO2-emitting power plants along the coastal US, a favored siting location for AWL. Waste fines, representing more than 20% of current US crushed limestone production (>109tonnes/yr), could provide an inexpensive or free source of AWL carbonate. With limestone transportation then as the dominant cost variable, CO2 mitigation costs of $3-$4/tonne appear to be possible in certain locations. Perhaps 10–20% of US point–source CO2 emissions could be mitigated in this fashion. It is experimentally shown that CO2 sequestration rates of 10−6 to 10−5moles/secperm2 of limestone surface area are achievable, with reaction densities on the order of 10−2tonnes CO2 m−3day−1, highly dependent on limestone particle size, solution turbulence and flow, and CO2 concentration. Modeling shows that AWL would allow carbon storage in the ocean with significantly reduced impacts to seawater pH relative to direct CO2 disposal into the atmosphere or sea. The addition of AWL-derived alkalinity to the ocean may itself be beneficial for marine biota.

Keywords: CO2; Power plant; Mitigation; Capture; Sequestration; Storage; Limestone; Ocean (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544206002982
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:32:y:2007:i:8:p:1471-1477

DOI: 10.1016/j.energy.2006.10.011

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:32:y:2007:i:8:p:1471-1477