EconPapers    
Economics at your fingertips  
 

A novel hybrid oxy-fuel power cycle utilizing solar thermal energy

Chenhua Gou, Ruixian Cai and Hui Hong

Energy, 2007, vol. 32, issue 9, 1707-1714

Abstract: An advanced oxy-fuel hybrid power system (AHPS) is proposed in this paper. Solar thermal energy is used in the AHPS to produce saturated steam as the working fluid, and natural gas is internally combusted with pure oxygen. It is in configuration close to the zero emission Graz cycle. The thermodynamic characteristics at design conditions of the AHPS are analyzed using the advanced process simulator Aspen Plus. The corresponding exergy loss analyses are also carried out to gain understanding of the loss distribution. The results are given in detail. The solar thermal hybrid H2O turbine power generation system (STHS) is evaluated in this study as the reference. The comparison results demonstrate that the proposed cycle has notable advantages in thermodynamic performances. For example, the net fuel-to-electricity efficiency of the AHPS is 95.90%, which is 21.61 percentage points higher than that of the STHS. The exergy efficiency (based on the exergy input of fuel and solar thermal energy without radiation) of the AHPS is 55.88%, which is 2.13 percentage points higher than that of the STHS.

Keywords: Hybrid power cycle; Oxy-fuel combustion; Solar thermal energy; CO2 capture (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544206003446
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:32:y:2007:i:9:p:1707-1714

DOI: 10.1016/j.energy.2006.12.001

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:32:y:2007:i:9:p:1707-1714