Numerical modelling and PTO damping optimization of an IEA-15-MW-VolturnUS-WEC hybrid system in real sea states
Tianyuan Wang,
Demin Li,
Deborah Greaves,
Martyn Hann,
Kai Zhu,
Yanni Li,
Haoxiang Gong,
Ji Tao,
Feifei Cao and
Hongda Shi
Energy, 2025, vol. 330, issue C
Abstract:
Based on the coupling framework between OpenFAST and WEC-Sim (OWS), this study proposes a numerical model for a floating offshore wind turbine (FOWT) and wave energy converter (WEC) hybrid energy system and develops a multi-objective, multi-parameter configuration optimization solver to find the optimal power take-off (PTO) damping. The hybrid system consists of an IEA-15-MW reference wind turbine (RWT), a UMaine-VolturnUS-S semisubmersible platform, and three toroidal heaving WECs installed on the side columns of the platform. By introducing an artificial viscous damping coefficient tuned from the computational fluid dynamics (CFD) results, a corrected potential flow (PF) model is employed to avoid the overestimation of hydrodynamic coefficients caused by the gap resonance between the WECs and the side columns. The permanent magnet linear generators (PMLGs) for the direct-drive WECs are modelled as linear-damping PTO. Aiming at maximum wave energy extraction, the PTO damping is optimized in real sea states using the optimizer that integrates a global population-based metaheuristic scatter search algorithm and several local large-scale nonlinear programming methods. Compared with the single FOWT, the WECs provide additional power gain while positively contributing to the platform response in pitch. Moreover, the study reveals that the time difference in the relative heave motion between the platform and the WECs, determined by the environmental conditions, is a key factor that affects the overall power production of the WEC array.
Keywords: Coupling framework; Floating offshore wind turbine; Hybrid energy system; Parameter optimization (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225023357
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:330:y:2025:i:c:s0360544225023357
DOI: 10.1016/j.energy.2025.136693
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().