Investigations on thermo-mechanical coupling behaviours of energy pile group under groundwater seepage
Weibo Yang,
Zhiyong Rao,
Yuhan Qiang and
Feng Wang
Energy, 2025, vol. 330, issue C
Abstract:
The thermo-mechanical (TM) behaviour of the energy pile (EP) group becomes more complicated in the presence of seepage, and the mechanism by which seepage impacts the EP group remains unclear.In the current work, a 2 × 2 scale model test bench of EP group was set up to investigate the TM behaviour of EP group with seepage. The test results indicate that the heat exchange performance of EP group with seepage can be significantly enhanced, but also leads to obvious differences in the temperature distribution of pile and surrounding soil along the seepage direction, and thus causes evident differences in the mechanical properties between the front pile and the back pile in pile group. Compared with the parallel connection form, the thermal performance of EP group with the series connection form is slightly attenuated. However, the mechanical properties of various piles in the EP group differ significantly. Under the action of seepage, the mechanical balance properties of various piles in the forward series form are optimal, followed by the parallel form, and the reverse series form is the least optimal. A 3-D CFD model was established to further obtain the influence of seepage and arrangement forms on EP group. The findings indicate that seepage can not only mitigate thermal interference between distinct piles but also expedite the process of heat transfer from pile-soil to reach a state of stability. Concurrently, the thermal migration effect induced by seepage will be superimposed along the seepage direction, resulting in the elevation of thermal interference of each pile along the seepage direction, and the superposition of thermal migration effect increases with the time. Under the same seepage condition, the cross arrangement can enhance the thermal performance of EP group, optimize the temperature distribution of pile and soil, and thus the imbalance of mechanical properties among pile groups can be reduced. In addition, the concepts of thermal interference coefficient and heat exchange rate per unit soil volume are introduced to facilitate a more precise evaluation of the thermal interference degree of each pile in the pile group and the heat exchange performance under different pile arrangement forms.The standard deviation and mean value in the statistical method are used to evaluate the equilibrium of mechanical properties of pile group, which is more intuitive to compare the differences in mechanical properties of pile groups under different working conditions.
Keywords: Thermo-mechanical behaviours; Energy pile group; Groundwater seepage; Arrangement form; Experimental study; Numerical simulation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422502585X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:330:y:2025:i:c:s036054422502585x
DOI: 10.1016/j.energy.2025.136943
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().