Techno-spatial evaluation of the sustainable thermal potential and water withdrawal rates of waterbodies
Abdulraheem Salaymeh,
Johannes Eck,
Stefan Holler and
Irene Peters
Energy, 2025, vol. 332, issue C
Abstract:
The rising need for renewable energy intensifies interest in the thermal utilisation of waterbodies, which in turn gives rise to ecological risks such as thermal pollution and water quality deterioration, underscoring the need for valid potential evaluation to ensure sustainable use. Conventional evaluation methodologies often apply uniform limits for allowed water temperature changes, overlooking the diversity of waterbody typologies and existing aquatic biota, which leads to uncertainty in the sustainably usable thermal potential and water withdrawal rates. Addressing this gap, this study applies a novel techno-spatial approach, characterising waterbodies by temperature tolerance and evaluating their thermal potential considering the ecological status and technical sensitivity, in compliance with the European Water Framework Directive (WFD) and the German Surface Waters Ordinance (OGewV). Findings reveal substantial regional variation, with only 6% of rivers displaying high tolerance to temperature change, predominantly in lowland areas. When comparing plant siting strategies, broad inclusion of all river types increases the number of possible sites and improves urban accessibility, but overall reduces available capacity due to stricter ecological thresholds. Sensitivity analyses identify water withdrawal rates and operational parameters as primary sources of technical uncertainty. These findings highlight considerable spatial, technical, and ecological constraints, and inform region-specific water-energy management.
Keywords: Environmental potential; Ecological status; Thermal tolerance; River clusters; Techno-spatial sensitivity; GIS; Major natural regions (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225027355
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:332:y:2025:i:c:s0360544225027355
DOI: 10.1016/j.energy.2025.137093
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().