Interpretable deep learning with uncertainty quantification for lithium-ion battery SOH estimation
Mengyao Geng,
Yanghan Su,
Changlin Liu,
Liqun Chen and
Xinyan Huang
Energy, 2025, vol. 335, issue C
Abstract:
The rapid proliferation of lithium-ion batteries in electric vehicles and grid-scale energy storage systems has underscored the critical need for advanced battery management systems, particularly for accurate state of health (SOH) monitoring for massive cells. This paper has proposed an interpretable deep learning framework for SOH prediction, in which a long short-term memory (LSTM) network optimized by the sparrow search algorithm (SSA) serves as the core predictor. To enhance the transparency and reliability of the model, Deep SHAP (SHapley Additive explanations) is employed to interpret the contribution of each health feature, and uncertainty is quantified through confidence intervals derived from stochastic seed variation. To validate the proposed model, experiments were conducted on 12 batteries from the NASA and CALCE public datasets, as well as a proprietary dataset at PolyU. The experimental results show that the proposed model significantly outperforms others, with RMSE, MAE, and MAPE all below 5%. This work supports the practical application of interpretable SOH estimation in battery management systems to improve the safety and reliability of energy storage system operations.
Keywords: Li-ion batteries; Explainable artificial intelligence; Long short-term memory; Uncertainty quantification; State of health; Sparrow search algorithm (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225036692
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:335:y:2025:i:c:s0360544225036692
DOI: 10.1016/j.energy.2025.138027
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().