EconPapers    
Economics at your fingertips  
 

Theory and experimental investigation of a weir-type inclined solar still

S.B. Sadineni, R. Hurt, C.K. Halford and R.F. Boehm

Energy, 2008, vol. 33, issue 1, 71-80

Abstract: A weir-type solar still is proposed to recover rejected water from the water purifying systems for solar hydrogen production. This consists of an inclined absorber plate formed to make weirs, as well as a top basin and a bottom basin. Water is flowed from the top basin over the weirs to the bottom collection basin. A small pump is used to return the unevaporated water to the top tank. Hourly distillate productivity of the still with double- and single-pane glass covers was measured and the latter showed higher production rates. The average distillate productivities for double- and single-pane glass covers are approximately 2.2 and 5.5l/m2/day in the months of August and September in Las Vegas, respectively. Mathematical models that can predict the hourly distillate productivity are developed. These compared well with the experimental results. Productivity of the weir-type still with a single-pane glass was also compared with conventional basin types tested at the same location. The productivity of the weir-type still is approximately 20% higher. The quality of distillate from the still is analyzed to verify the ability of the still to meet the standards required by the electrolyzers.

Keywords: Solar still; Distillation; Hydrogen; Weir-type still; Renewable; Theoretical; Experimental; Electrolyzer; Double-pane glass (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544207001363
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:33:y:2008:i:1:p:71-80

DOI: 10.1016/j.energy.2007.08.003

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:33:y:2008:i:1:p:71-80