Effect of exhaust gas recirculation (EGR) temperature for various EGR rates on heavy duty DI diesel engine performance and emissions
D.T. Hountalas,
G.C. Mavropoulos and
K.B. Binder
Energy, 2008, vol. 33, issue 2, 272-283
Abstract:
DI diesel engines are well established today as the main powertrain solution for trucks and other relevant heavy duty vehicles. At the same time emission legislation (mainly for NOx and particulate matter) becomes stricter, reducing their limit to extremely low values. One efficient method to control NOx in order to achieve future emissions limits is the use of rather high exhaust gas recirculation (EGR) rates accompanied by increased boost pressure to avoid the negative impact on soot emissions. The method is based on the reduction of gas temperature level and O2 availability inside the combustion chamber, but unfortunately it has usually an adverse effect on soot emissions and brake specific fuel consumption (bsfc). The use of high EGR rates creates the need for EGR gas cooling in order to minimize its negative impact on soot emissions especially at high engine load were the EGR flow rate and exhaust temperature are high. For this reason in the present paper it is examined, using a multi-zone combustion model, the effect of cooled EGR gas temperature level for various EGR percentages on performance and emissions of a turbocharged DI heavy duty diesel engine operating at full load. Results reveal that the decrease of EGR gas temperature has a positive effect on bsfc, soot (lower values) while it has only a small positive effect on NO. As revealed, the effect of low EGR temperature is stronger at high EGR rates.
Keywords: Exhaust gas recirculation; Diesel engine; EGR temperature; Emissions (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (44)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544207001144
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:33:y:2008:i:2:p:272-283
DOI: 10.1016/j.energy.2007.07.002
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().