EconPapers    
Economics at your fingertips  
 

Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review

L. Barelli, G. Bidini, F. Gallorini and S. Servili

Energy, 2008, vol. 33, issue 4, 554-570

Abstract: With the rapid development of industry, more and more waste gases are emitted into the atmosphere. In terms of total air emissions, CO2 is emitted in the greatest amount, accounting for 99wt% of the total air emissions, therefore contributing to global warming, the so-called “Greenhouse Effect”. The recovery and disposal of CO2 from flue gas is currently the object of great international interest. Most of the CO2 comes from the combustion of fossil fuels in power generation, industrial boilers, residential and commercial heating, and transportation sectors. Consequently, in the last years’ interest in hydrogen as an energy carrier has significantly increased both for vehicle fuelling and stationary energy production from fuel cells. The benefits of a hydrogen energy policy are the reduction of the greenhouse effect, principally due to the centralization of the emission sources. Moreover, an improvement to the environmental benefits can be achieved if hydrogen is produced from renewable sources, as biomass.

Keywords: Hydrogen; SMR; CO2 capture; Solid acceptor; SE-SMR (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (46)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544207002058
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:33:y:2008:i:4:p:554-570

DOI: 10.1016/j.energy.2007.10.018

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:33:y:2008:i:4:p:554-570