Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal
C. Descamps,
C. Bouallou and
M. Kanniche
Energy, 2008, vol. 33, issue 6, 874-881
Abstract:
This study is devoted to technical evaluation of a carbon dioxide removal in an existing Integrated Gasification Combined Cycle (IGCC) plant. This IGCC case is based on an oxygen blown entrained flow gasifier operating at 27bar, the removal of acid gas (H2S) is performed with MDEA unit, the efficiency of this IGCC is 43% based on the low heating value (LHV) of coal. A carbon dioxide separation unit conveniently integrated in a pre-combustion separation process is chosen, in order to take advantage of the high pressure of the gas. The methanol process for carbon dioxide removal is integrated downstream the existing desulfuration unit, and after a CO shift conversion unit. In this study, the integration of the CO2 capture process to the IGCC is simulated as realistically as possible. The design parameters of both the gas turbine (the turbine inlet temperature, compressor pressure ratio, reduced flow rate) and the steam turbine (Stodola parameter) are taken into account. Maintenance of low NOx production in the combustion chamber is also considered. The production of NOx is supposed to be influenced by the low heating value of the gas which is maintained as low as for case of the synthesis gas without CO2 capture. Thus the choice is made to feed the gas turbine of the combined cycle with a diluted synthesis gas, having similar low heating value than the one produced without the CO2 capture. Plant performances for different conversion and capture rates are compared. A final optimized integration is given for 92mol% CO conversion rate and 95mol% CO2 absorption rates, a comparison with former studies is proposed.
Keywords: CO2 removal; IGCC; Physical absorption; Pre-combustion; Capture (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (42)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544207001260
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:33:y:2008:i:6:p:874-881
DOI: 10.1016/j.energy.2007.07.013
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().