An analysis of thermal and solar zone radiation models using an Angstrom–Prescott equation and artificial neural networks
Kevin K.W. Wan,
H.L. Tang,
Liu Yang and
Joseph C. Lam
Energy, 2008, vol. 33, issue 7, 1115-1127
Abstract:
The correlation between the clearness index and sunshine duration is useful in the estimation of the solar radiation for areas where measured solar radiation data are unavailable. Regression techniques and artificial neural networks were used to investigate the correlations between daily global solar radiation (GSR) and sunshine duration for different climates in China. Measurements made during the 30-year period (1971–2000) from 41 measuring stations covering 9 thermal and 7 solar climate zones and sub-zones across China were gathered and analysed. The performance of the regression and the ANN models in the thermal and solar zones was analysed and compared. The coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSEC), mean bias error (MBE) and root-mean-square error (RMSE) were determined. It was found that the regression models in both the thermal and the solar climate zones showed a strong correlation between the clearness index and sunshine duration (R2=0.79–88). There appeared to be an increasing trend of larger MBE and RMSE from colder climates in the north to warmer climates in the south. In terms of the thermal and solar climate zone models, there was very little to choose between the two models.
Keywords: Angstrom–Prescott regression models; Artificial neural networks; Sunshine hours; Climate zones; China (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544208000479
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:33:y:2008:i:7:p:1115-1127
DOI: 10.1016/j.energy.2008.01.015
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().