EconPapers    
Economics at your fingertips  
 

Energy efficiency improvements in longan drying practice

N. Tippayawong, C. Tantakitti and S. Thavornun

Energy, 2008, vol. 33, issue 7, 1137-1143

Abstract: This paper presents and evaluates methods of improvement of energy utilization and reduction of energy cost in conventional unpeeled longan drying. Existing dryers were modified into a new dryer arrangement. Performance in terms of specific energy utilization, thermal efficiency and operating cost indices for both traditional and new designs was evaluated. Results showed that the modified dryer yielded an average thermal efficiency of 0.35, compared to 0.29 for the existing dryer. For the same mass of dried longan produced, specific energy utilization and fuel cost were reduced by more than 16% and 80%, respectively. The improvement was attributed to fuel switching from liquefied petroleum gas to wood, heat recovery via hot air recirculation, better temperature and humidity control, and thermal insulation. The new dryer with improved design and better energy efficiency was estimated to have payback period less than 3 years.

Keywords: Biomass; Drying; Energy efficiency; Fuel switching; Longan (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054420800056X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:33:y:2008:i:7:p:1137-1143

DOI: 10.1016/j.energy.2008.02.007

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:33:y:2008:i:7:p:1137-1143