Thermochemical two-step water-splitting for hydrogen production using Fe-YSZ particles and a ceramic foam device
Nobuyuki Gokon,
Tomoki Hasegawa,
Shingo Takahashi and
Tatsuya Kodama
Energy, 2008, vol. 33, issue 9, 1407-1416
Abstract:
Fe3O4 supported on cubic yttria-stabilized zirconia (Fe3O4/c-YSZ) is proposed as a promising redox material for the production of hydrogen from water via a thermochemical two-step water-splitting cycle. In this study, the evolution of oxygen and hydrogen during the cyclic reaction was examined using Fe3O4/c-YSZ particles in order to demonstrate reproducible and stoichometric oxygen/hydrogen production through a repeatable two-step reaction. Subsequently, a ceramic foam device coated with Fe3O4 and c-YSZ particles was prepared and examined as a thermochemical water-splitting device in a directly irradiated receiver/reactor hydrogen production system. The Fe3O4/c-YSZ system formed a Fe-containing YSZ (Fe-YSZ) by high-temperature reaction between Fe3O4 and the c-YSZ support at 1400°C in an inert atmosphere. The reaction mechanism of the two-step water-splitting cycle is associated with the redox transition of Fe2+–Fe3+ ions in the c-YSZ lattice. The Fe-YSZ particles exhibit good reproducibility for reaction with a hydrogen/oxygen ratio of approximately 2.0 throughout repeated cycles. The foam device coated with Fe-YSZ particles was also successful for continual hydrogen production through 32 repeated cycles. A 20–27% ferrite conversion was obtained using 10.5wt% Fe3O4 loading over an irradiation period of 60min.
Keywords: Solar heat; Energy conversion; Hydrogen production; Thermochemical water-splitting; Ferrite cycle; Ceramic foam (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544208001126
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:33:y:2008:i:9:p:1407-1416
DOI: 10.1016/j.energy.2008.04.011
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().