Optimization of network planning by the novel hybrid algorithms of intelligent optimization techniques
A. Sadegheih
Energy, 2009, vol. 34, issue 10, 1539-1551
Abstract:
This paper proposes a new hybrid algorithm Meta-heuristic for the problem of network planning systems. The main goal of this paper is, to develop an efficient optimization tool which will minimise the cost functions of the stated optimization problems in network planning systems. The following are the objectives of the research: to investigate the capabilities of genetic algorithm, simulated annealing and tabu search for the defined optimization tasks; to develop a hybrid optimization algorithm which will produce improved iterations compared to those found by GA, SA, and TS algorithms. The performance of the hybrid algorithm is illustrated and six hybrid algorithms are developed, to improve the iterations obtained. The cost function of this problem consists of the capital investment cost in discrete form, the cost of transmission losses and the power generation costs. It is advantageous to use exact DC load flow constraint equations based on the modified form of Kirchhoff's Second Law because the iterative process for line addition is not required. Hence, the computation time is decreased. Finally, the hybrid VI shows to be a very good option for network planning systems given that it obtains much accentuated reductions of iteration, which is very important for network planning.
Keywords: Hybrid algorithms; Evolutionary computation techniques; System planning; Simulated annealing; Genetic algorithm; Tabu search; Mathematical programming; Heuristic techniques (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544209002692
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:34:y:2009:i:10:p:1539-1551
DOI: 10.1016/j.energy.2009.06.047
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().