EconPapers    
Economics at your fingertips  
 

Parametric analysis for a new combined power and ejector–absorption refrigeration cycle

Jiangfeng Wang, Yiping Dai, Taiyong Zhang and Shaolin Ma

Energy, 2009, vol. 34, issue 10, 1587-1593

Abstract: A new combined power and ejector–absorption refrigeration cycle is proposed, which combines the Rankine cycle and the ejector–absorption refrigeration cycle, and could produce both power output and refrigeration output simultaneously. This combined cycle, which originates from the cycle proposed by authors previously, introduces an ejector between the rectifier and the condenser, and provides a performance improvement without greatly increasing the complexity of the system. A parametric analysis is conducted to evaluate the effects of the key thermodynamic parameters on the cycle performance. It is shown that heat source temperature, condenser temperature, evaporator temperature, turbine inlet pressure, turbine inlet temperature, and basic solution ammonia concentration have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. It is evident that the ejector can improve the performance of the combined cycle proposed by authors previously.

Keywords: Ammonia–water; Combined cycle; Parametric analysis; Waste heat recovery (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544209002837
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:34:y:2009:i:10:p:1587-1593

DOI: 10.1016/j.energy.2009.07.004

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:34:y:2009:i:10:p:1587-1593