EconPapers    
Economics at your fingertips  
 

Feasibility and flexibility for a trigeneration system

Sau Man Lai and Chi Wai Hui

Energy, 2009, vol. 34, issue 10, 1693-1704

Abstract: Trigeneration system, which produces heat, cold and electricity simultaneously, is generally designed based on the nominal condition. However, the utility demands are seldom fixed and they are usually changing in periodical manner with the climate and the human activities. These demand changes make the system design difficult. To ensure operability, the system should be feasible and flexible to tackle such demand variations. Over-sizing, thermal storage and flexibility re-allocation can be used to improve a trigeneration system's feasibility and flexibility. These techniques may enlarge the feasible operating region, change and shift the expected utility production demands and interchange between different generation capabilities according to the demand requirements. As a result, the process feasibility and flexibility can be improved. With feasible operation ensured, process flexibility can be considered under economic trade-offs. A flexible design with reasonable investment and operating costs provides additional benefits to cater demand changes in the future. In this study, process flexibility and feasibility characteristics are proposed and evaluated from a new perspective. These are demonstrated in the trigeneration system design with a pre-defined structure to handle periodical utility demand deviations in a commercial building complex.

Keywords: Trigeneration design; Demand uncertainty; Flexibility; Feasibility; Periodic variations (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544209001431
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:34:y:2009:i:10:p:1693-1704

DOI: 10.1016/j.energy.2009.04.024

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:34:y:2009:i:10:p:1693-1704