EconPapers    
Economics at your fingertips  
 

KiteGen: A revolution in wind energy generation

M. Canale, L. Fagiano and M. Milanese

Energy, 2009, vol. 34, issue 3, 355-361

Abstract: Control of tethered airfoils is investigated, in order to devise a new class of wind generators to overcome the main limitations of the present wind technology, based on wind mills. A model from the literature is used to simulate the dynamic of a kite whose lines are suitably pulled by a control unit. Energy is generated by a cycle composed of two phases, indicated as the traction and the drag one. The kite control unit is placed on the arm of a vertical axis rotor, connected to an electric drive able to act as a generator when the kite pulls the rotor and as a motor in dragging the kite against the wind. Control is obtained by “fast” implementation of Nonlinear Model Predictive Control (NMPC). In the traction phase the control is designed such that the kite pulls the rotor arm, maximizing the amount of generated energy. When energy cannot be generated anymore, the control enters the drag phase and the kite is driven to a region where the energy spent to drag the rotor is a small fraction of the energy generated in the traction phase, until a new traction phase is undertaken. Simulation results are presented, showing encouraging performances.

Keywords: Emerging control applications; Power systems; Wind energy (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544208002569
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:34:y:2009:i:3:p:355-361

DOI: 10.1016/j.energy.2008.10.003

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:34:y:2009:i:3:p:355-361