An entropy generation metric for non-energy systems assessments
Dusan P. Sekulic
Energy, 2009, vol. 34, issue 5, 587-592
Abstract:
Processes in non-energy systems have not been as frequent a subject of sustainability studies based on Thermodynamics as have processes in energy systems. This paper offers insight into thermodynamic thinking devoted to selection of a sustainability energy-related metric based on entropy balancing of a non-energy system. An underlying objective in this sustainability oriented study is product quality involving thermal processing during manufacturing vs. resource utilization (say, energy). The product quality for the considered family of materials processing for manufacturing is postulated as inherently controlled by the imposed temperature non-uniformity margins. These temperature non-uniformities can be converted into a thermodynamic metric which can be related to either destruction of exergy of the available resource or, on a more fundamental level of process quality, to entropy generation inherent to the considered manufacturing system. Hence, a manufacturing system can be considered as if it were an energy system, although in the later case the system objective would be quite different. In a non-energy process, a metric may indicate the level of perfection of the process (not necessarily energy efficiency) and may be related to the sustainability footprint or, as advocated in this paper, it may be related to product quality. Controlled atmosphere brazing (CAB) of aluminum, a state-of-the-art manufacturing process involving mass production of compact heat exchangers for automotive, aerospace and process industries, has been used as an example.
Keywords: Sustainability; Thermodynamics; Metrics; Product quality; Entropy (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544208001436
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:34:y:2009:i:5:p:587-592
DOI: 10.1016/j.energy.2008.06.003
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().