EconPapers    
Economics at your fingertips  
 

Introduction of a new definition for effectiveness of desiccant wheels

M. Ali Mandegari and H. Pahlavanzadeh

Energy, 2009, vol. 34, issue 6, 797-803

Abstract: In common air conditioning methods, both sensible and latent loads are handled by cooling systems. Utilizing desiccant, individual cooling and dehumidification processes are possible. In this paper, desiccant wheel operation has been investigated by experimental study. Experimental conditions include different climates (hot dry and hot humid) at different operating parameters (regeneration temperature and wheel speed). Due to the temperature and humidity measurements of inlet and outlet streams, the desiccant wheel efficiency in each definition was calculated. All experiments show that enthalpy of the outlet process air is notably higher than that of the inlet air. This event leads to a novel efficiency definition which presents the deviation of the outlet process air enthalpy from the inlet air enthalpy. By increase in the dehumidification efficiency, the adiabatic efficiency decreases, whereas it increases by the regeneration efficiency. Hence in some situations the adiabatic efficiency will have an optimum value. According to the adiabatic efficiency concept, it seems to be related to the coefficient of performance of the desiccant cooling systems.

Keywords: Desiccant wheel; Dehumidification; Adiabatic efficiency; Experiment (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544209000541
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:34:y:2009:i:6:p:797-803

DOI: 10.1016/j.energy.2009.03.001

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:34:y:2009:i:6:p:797-803