EconPapers    
Economics at your fingertips  
 

Improving energy recovery for water minimisation

Boondarik Leewongtanawit and Jin-Kuk Kim

Energy, 2009, vol. 34, issue 7, 880-893

Abstract: A graphical approach for the design of heat-integrated water systems has been proposed to improve conceptual understanding for implications of heat recovery in water systems, as well as to provide systematic design guidelines for selecting most appropriate integrated options in practice. The developed design method aims to fully exploit water reuse potentials between water-using operations, and simultaneously to minimise any potential degradation of energy recovery resulted from water reuse. Graphical representations of heat-integrated water systems and their manipulation have been applied to investigate systematically design interactions, impacts associated with stream merging and splitting, and influences of non-isothermal mixing on heat recovery. Water Energy Balance Diagram has been developed to improve energy recovery in water reuse network. Energy-efficient and cost-effective configuration for heat recovery has been identified, using improved Separate System Approach. The proposed approach significantly reduces both water and energy requirements for single-contaminant water systems.

Keywords: Water minimisation; Heat integration; Water reuse; Heat recovery (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544209000942
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:34:y:2009:i:7:p:880-893

DOI: 10.1016/j.energy.2009.03.004

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:34:y:2009:i:7:p:880-893