EconPapers    
Economics at your fingertips  
 

Comprehensive energy and economic analyses on a zero energy house versus a conventional house

Lixing Zhu, R. Hurt, D. Correa and R. Boehm

Energy, 2009, vol. 34, issue 9, 1043-1053

Abstract: A zero energy house (ZEH) was built side by side with a baseline house in suburban Las Vegas. Actual energy performance measurements were carried out on the incorporated energy saving features and solar applications. The data show that a radiant barrier and a water-cooled air conditioner are major contributors to the energy savings, while an insulated floor slab and thermal mass walls are not effective for energy-conservation during cooling periods. Photovoltaic roof tiles produce enough green power to cover the use in the ZEH, and the solar water heater can reach a peak efficiency of 80%. The energy saving contribution of each incorporated component was obtained using Energy10 and eQUEST3.6 models, and then these codes were used for economic application evaluation. The two analysis codes yield similar results that compare well with the actual building performance data. Four items are clearly economically valuable for these applications: high performance windows, compact fluorescent lights, highly-insulated roofs and air conditioners with water-cooled condensers. PV tiles show a good financial return when rebates are considered. The Integrated Collector Storage (ICS) unit has a high efficiency but with a little higher thermal price. Thermal mass walls are too costly to have wide market appeal.

Keywords: ZEH; Economic analysis; Energy savings; Building simulation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544209000966
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:34:y:2009:i:9:p:1043-1053

DOI: 10.1016/j.energy.2009.03.010

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:34:y:2009:i:9:p:1043-1053