Economics at your fingertips  

Highly efficient electricity generation from biomass by integration and hybridization with combined cycle gas turbine (CCGT) plants for natural gas

Erik Pihl, Stefan Heyne, Henrik Thunman and Filip Johnsson

Energy, 2010, vol. 35, issue 10, 4042-4052

Abstract: Integration/co-firing with existing fossil fuel plants could give near term highly efficient and low cost power production from biomass. This paper presents a techno-economical analysis on options for integrating biomass thermal conversion (optimized for local resources ∼50 MWth) with existing CCGT (combined cycle gas turbine) power plants (800–1400 MWth). Options include hybrid combined cycles (HCC), indirect gasification of biomass and simple cycle biomass steam plants which are simulated using the software Ebsilon Professional and Aspen Plus. Levelized cost of electricity (LCoE) is calculated with cost functions derived from power plant data. Results show that the integrated HCC configurations (fully-fired) show a significantly higher efficiency (40–41%, LHV (lower heating value)) than a stand-alone steam plant (35.5%); roughly half of the efficiency (2.4% points) is due to more efficient fuel drying. Because of higher investment costs, HCC options have cost advantages over stand-alone options at high biomass fuel prices (>25 EUR/MWh) or low discount rates (<5%). Gasification options show even higher efficiency (46–50%), and the lowest LCoE for the options studied for fuel costs exceeding 10 EUR/MWh. It can be concluded that clear efficiency improvements and possible cost reductions can be reached by integration of biomass with CCGT power plants compared to stand-alone plants.

Keywords: Biomass; Hybrid combined cycles; Gasification; Modeling; Integration (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (11) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-09-29
Handle: RePEc:eee:energy:v:35:y:2010:i:10:p:4042-4052